On the Role of Hierarchy for Neural Network Interpretation

نویسندگان

  • Jürgen Rahmel
  • Christian Blum
  • Peter Hahn
چکیده

In this paper, we concentrate on the expressive power of hierarchical structures in neural networks. Recently, the so-called SplitNet model was introduced. It develops a dynamic network structure based on growing and spl i t t ing Kohonen chains and it belongs to the class of topology preserving networks. We briefly introduce the basics of this model and explain the different sources of information bui l t up during the training phase, namely the neuron distr ibut ion, the final topology of the network, and the emerging hierarchical structure. In contrast to most other neural models in which the structure is only a means to get desired results, in SplitNet the structure itself is part of the aim. Our focus then lies on the interpretation of the hierarchy produced by the training algorithm and we relate our findings to a common data analysis method, the hierarchical cluster analysis. We il lustrate the results of network application to a real medical diagnosis and monitoring task in the domain of nerve lesions of the human hand.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance comparison of land change modeling techniques for land use projection of arid watersheds

The change of land use/land cover has been known as an imperative force in environmental alteration, especially in arid and semi-arid areas. This research was mainly aimed to assess the validity of two major types of land change modeling techniques via a three dimensional approach in Birjand urban watershed located in an arid climatic region of Iran. Thus, a Markovian approach based on two suit...

متن کامل

The optimized model of factors effecting on the Merger and Acquisition from multiple dimensions with neural network approach.

Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...

متن کامل

طبقه بندی و شناسایی رخساره‌های زمین‌شناسی با استفاده از داده‌های لرزه نگاری و شبکه‌های عصبی رقابتی

Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)

Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997